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Abstract: We studied the community structure pattern in the visualizations of ten personal 
social networks on Facebook at a single point in time. It seems to be a strong tendency 
towards community formation in online personal, social networks: somebody’s friends are 
usually also friends between them, forming subgroups of more densely connected nodes. 
Research on community structure in social networks usually focuses on the networks’ 
statistical properties. There is a need for qualitative studies bridging the gap between 
network topologies and their sociological implications. To this direction, visual 
representations of personal networks in social media could be a valuable source of 
empirical data for qualitative interpretation. Most of the personal social networks’ 
visualizations in the present study are very highly clustered with densely-knit overlapping 
subgroups of friends and interconnected between them through wide bridges. This 
network topology pattern seems to be quite efficient, allowing for a fast spread and 
diffusion of information across the whole social network. 
Keywords: social network analysis, social network visualization, community structure, 
Gephi, friendships network, Facebook 
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Introduction 
 
Networks today are everywhere. The brain of all mammals is a vast network of 
neurons (nodes) connected through synapses (edges). The difference today, in 
comparison to the past, is that we are more sensitive to observe the ever present 
networks; now instead of looking at standalone entities, we focus more and more 
on their relation, on the connections between them: “Network thinking means 
focusing on relationships between entities rather on the entities themselves” 
(Mitchell, 2009. p. 233). The paradigm shift from the study of the isolated parts 
towards the study of the interconnected whole is prominent in many disciplines. 
Michael Bakhtin focused on the relation-between two entities quite before network 
thinking conquered scientific foreground: “all meaning is relative in the sense that 
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it comes about only as a result of the relation between two bodies occupying 
simultaneous but different space” (Holquist, 2002, p. 21). In this view, the self 
exists only through its relation to another self. In complexity theory, networks are 
complex entities with emergent properties so that the whole is quite different 
from the sum of the parts (Feldman, 2012). In literature, Italo Calvino, a famous 
writer, highlights, in a very vivid way, the importance of the relations for 
establishing human communities, when referring to the invisible city of Ersilia: “In 
Ersilia, to establish the relationships that sustain the city's life, the inhabitants 
stretch strings from the corners of the houses, white or black or gray or black-and-
white according to whether they mark a relationship of blood, of trade, authority, 
agency” (Calvino, 1974, p. 76).  
 
Background 
 

Personal social networks are usually characterized by community structure: 
somebody’s friends are usually also friends between them, forming subgroups of 
more densely connected nodes on their network visual representation. This form of 
largely separate, tightly knit communities in networks is also termed clustering of 
the nodes (Mitchell, 2009). Community structure is an important aspect of personal 
social networks; communities of friends form the basis to understand the contexts 
of somebody’s social life (Watts, 2004). Different clusters of friends are associated 
with different contexts in a person’s life, for example with different interests, 
activities or different periods of life (Mitchell, 2009). According to Duncan Watts 
(2004): “By belonging to certain groups and playing certain roles, individuals 
acquire characteristics that make them more or less likely to interact with one 
another. Social identity, in other words, drives the creation of social networks” (p. 
116). 

People and their social networks are always in a co-evolving transformative 
reciprocal relation. It works both ways: “People may know who they know because 
of what they do, but people also try new things because of who they know. Your 
friends invite you to parties or drag you along on their favorite activities” (Watts, 
2004, p. 128). An individual, in order to remain fit in a complex living landscape, 
must adapt to the adaptations of the network of all other agents (Kauffman, 1996). 
I shape my personal network, the very moment I am shaped by my personal 
network: “Many networks are the product of dynamical processes that add or 
remove vertices or edges. For instance, a social network of friendships changes as 
individuals make and break ties with others” (Newman et al, 2006, p. 7). 
Therefore, there is a relation of reciprocal determination between the form of 
people’s friendship network and the way they connect to new friends: “The ties 
people make affect the form of the network, and the form of the network affects 
the ties people make. Social network structure therefore evolves in a historically 
dependent manner, in which the role of the participants and the patterns of 
behavior they follow cannot be ignored” (Newman et al, 2006, p. 7). A critical 
question to ask is: what story somebody’s friendships network tell us about her 
personality? By studying the structure of a person’s social network, we witness 
simultaneously the network’s history as well its dynamics.  

 Previous research on networks’ community structure has focused 
extensively on the statistical properties of the identified community structures in 
social networks and web groups. However, there is a need for qualitative studies 
bridging the gap between network topologies and behavioral or sociological 
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implications. To this direction, visual representations of network data depicting 
their community structure and the pattern of interconnection among clusters could 
be a quite valuable source of empirical data for qualitative interpretation (Ferrara, 
2012b). 
 
Method 
 

We study the personal social networks on Facebook of ten (10) participants 
in a senior undergraduate research seminar offered by the Psychology Department 
of Panteion University of Social and Political Sciences, in Athens, Greece, during 
the winter semester of the academic year 2014-15. The participants were female 
students, aged between 19 to 25 years old. Personal friendships network data were 
extracted from the participants’ Facebook accounts, with their consent and 
cooperation, by using NetVizz application (Rieder, 2013). Network data were 
anonymized prior to any further analysis. 

Following network data collection, the corresponding network graphs were 
analyzed using Gephi network analysis software (Bastian, Heymann, & Jacomy, 
2009). The basic networks’ characteristics (presented in ascending order of the 
number of friends/nodes) are shown in Table 1. The first network analysis 
technique applied to each personal social network in Gephi was an outline 
algorithm, specifically ForceAtlas2 (Jacomy, Heymann, Venturini, & Bastian, 
2012). This algorithm belongs to a class of imaging algorithms that operate through 
attraction-repulsion forces. The core principle of this algorithm is that the more 
densely interconnected nodes are attracted to each other while lesser 
interconnected ones are repelled (Jacomy et al, 2012). By applying this outline 
algorithm, the nodes of each graph were eventually grouped together in 
community clusters based on the interconnections between them in the overall 
graph structure. By applying the ForceAtlas2 outline algorithm, a clear visual 
community structure appeared in every graph in our study. Subsequently, we 
applied a more specialized community detection algorithm on each graph.  

 
Table 1: Personal social network of 60 nodes. 

 
 

Nodes 
(friends) 

 
Edges 
 

 
Avg. 

Degree 

 
Network 
Diameter 

 
Avg. Path 

Length 
60 164 5.467 4 2.103 
108 191 3.537 7 2.95 
186 766 8.237 8 3.311 
220 1475 13.409 6 2.73 
377 5259 27.899 5 2.293 
452 3908 17.292 10 3.168 
507 2872 1.329 9 3.664 
698 6474 18.55 9 3.456 
940 10943 23.283 8 3.057 
1011 16308 32.261 8 3.014 

 
In social network analysis, community detection is the process of identifying 

sub-groups of people more densely interconnected in comparison to out-members 
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(Blondel, Guillaume, Lambiotte, & Lefebvre, 2008). The community detection 
method used in Gephi is based on an algorithm first proposed by Newman and 
Girvan, with minor modifications to improve computational performance (Blondel 
et al, 2008). The sensitivity of the Gephi community detection algorithm can be 
adjusted using a resolution coefficient (Lambiotte, Delvenne, & Barahona, 2009). 
Increasing this resolution coefficient leads to detecting fewer and larger 
communities, while decreasing it leads to detecting more and smaller clusters. The 
detected communities in Gephi are visualized by a different color. The resolution 
coefficient was adjusted to 1.0 (default value) for the purposes of the exploratory 
analysis of our study. For each application of the algorithm a modularity parameter 
was computed (Blondel et al, 2008) and then used as a quality measure for the 
specific network partition in communities of friends. Values for the modularity 
over 0.4 are considered satisfactory and meaningful (Blondel et al, 2008). In every 
graph in our study, modularity parameter was within the accepted range of values. 
 
Network Visualizations - Results 
 

The personal social networks’ visualizations of the participants in our study 
are presented in this section (Figures 1 to 10) in the ascending order of the number 
of nodes (Facebook friends) of each network, in order to reveal any possible 
pattern of community structure that is related to networks’ sizes or that is 
persistent through all the graphs, regardless to their sizes. Different colors on the 
graphs’ nodes denote different communities. 

 
Figure 1: Personal social network of 60 nodes. 

 
Figure 2: Personal social network of 108 nodes. 
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Figure 3: Personal social network of 186 nodes. 

 

 
 
 

Figure 4: Personal social network of 220 nodes. 
 

 
 
 

Figure 5: Personal social network of 377 nodes. 
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Figure 6: Personal social network of 452 nodes. 
 

 
 

Figure 7: Personal social network of 507 nodes. 
 

 
Figure 8: Personal social network of 698 nodes. 
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Figure 9: Personal social network of 940 nodes. 
 

 
 

Figure 10: Personal social network of 1011 nodes. 

 
 
 
Discussion 
 

It seems to be a strong tendency towards the formation of communities in 
online personal social networks. Most of the personal social networks’ 
visualizations in our study are very highly clustered with densely-knit subgroups of 
friends (community structure). These observed subgroups are also interconnected 
between them through wide bridges (partially overlapping communities). 
Community structure and inter-community bridges are more evident as the number 
of nodes grows. This network topology of densely-knit subgroups of nodes 
interconnected through wide bridges, observed in most of the personal networks in 
our study, resembles strongly with the visualization of world flight routes based on 
openflights.org data, shown on Figure 11.  World flight routes functions to support 
efficient air transportations at a global scale.  
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Figure 11: World flight routes3. 
 

 
This network topology pattern, with discrete but bridged communities, 

appearing in many different contexts, seems to weave the necessary social fabric 
in order to efficiently support the dissemination of complex ideas, shared norms 
and social practices (Centola, 2015). People know each other because of the 
activities in which they participate (Watts, 2004), resulting in the formation of 
discrete communities of friends. These highly interconnected subgroups, which 
seem to indicate the presence of the small world phenomenon (Milgram, 1967; 
Watts & Strogatz, 1998) that is usually observed in online social networks (Ferrara, 
2012a), allow for a much faster spread and  diffusion of information across the 
whole social network (Nguyen, Senac, & Diaz, 2012). This diffusion of information 
inside the community might modify the individual’s interests and activities and 
therefore reshape once again her own personal social network: “all the activities 
we pursue that lead us to meet and interact with each other are contexts. So the 
set of contexts in which each of us participates is an extremely important 
determinant of the network structure that we subsequently create” (Watts, 2004, 
p. 115).  

The sample in our exploratory study (ten friendships’ graphs) is quite small 
and further research is needed to investigate the persistence of the observed 
network topology through different cultural settings. Longitudinal studies are 
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European Journal of Social Behaviour 2 (1): 21-30, 2015, Gkini & Brailas             

29 
 

required to investigate on the evolution of somebody’s community network pattern 
through her different personal developmental phases (childhood, adolescence or 
adulthood). An interesting research question for a following up study is whether 
there is a relation between the network topology of somebody’s friendships graph 
and the way that she connects and socializes with other persons, and whether it 
works the other way: is it possible after the network topology reaching a critical 
threshold pattern, to fire a change in the way a person socializes?  
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